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of metals, lead researchers to propose various
constitutive models, especially in the field of cyclic
plasticity, where phenomena with particular
importance to Low Cycle Fatigue (LCF), appear. The mean stress in HCF & LCF regimes. + Chaboche a = Zai o}
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stress and strain at geometrical discontinuities, with
the use of an appropriate rule, act as input data for the
constitutive model dictating the material elastoplastic

+ Engineering components - structures are subjected
to cyclically varying loads with mean stress/strain.
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+» When investigating the effect of mean stress, tests
run in two modes: strain-controlled cycling with

Figure 2. Experimental data for AA 7075 mean stress
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parameters. Existing experimental data on Aluminium mean stress relaxation.
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response of the material in focus. Examination of the

derived results indicates that the current modelling two types of test are equivalent, and can be used to Multiplier variable b (backstress type), Isotropic hardening
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